close

Post-doctoral position on Local Bubble Behaviour in Alkaline Electrolysis

Research / Academic
Enschede

Within the Soft matter, Fluidics, and Interfaces (SFI) group and closely working with the Physics of Fluids (PoF) group, we have a vacancy for a post-doctoral fellow relating to numerical simulations of electrolysis at a local bubble level.

Hydrogen is a recognized crucial component, required for many industrial processes such as fertilizer production. However, the main production route still relies on fossil sources. The sustainable electrochemical production of hydrogen, i.e. green hydrogen, needs to economically compete with the conventional production methods. To this end, you are part of a team of PhDs and post-docs exploring the optimization of hydrogen production through alkaline electrolysis.

The simulations are intended to provide local information on bubble phenomena in confined geometries at a pore level, which is not easily accessible by experimental methods (e.g. current distribution in the electrolyte). Close interaction with experimentalists working on single-bubble evolution is intended and will be crucial to the success of these simulations as locations and departure sizes are required inputs to the simulations.

We plan to solve the (Poisson) Nernst-Planck (NP) and Navier-Stokes (NS) equations, along with energy balances to account for localized Joule heating and considering the impact of gas evolution/crossover. This can be coupled to the evolution of the gas phase, for example via immersed boundary methods.

In this manner, the local charge distribution (concentration profiles of ionic species), potential profile and fluid flow can be estimated and compared with experimental results in order to deepen understanding of the factors governing transport at high applied currents in electrolysers and also compared to lab-scale stack results (experimental and simulation) in order to assess the suitability of macroscopic averaging. The (P)NP-NS framework allows for finite ion-size effects at high voltages, determining local reaction rates via the Butler-Volmer-Frumkin equations and inclusion of both gas evolution and gas crossover from experimental inputs.

The knowledge obtained from simulations and experiments on the local behaviour of single-bubbles will be used to improve empirical relationships (e.g. bubble departure size) found in larger scale stack modelling carried out by research partners, which means close collaboration with external partners is also a key part of this position.

Within this project, you will work closely together in a consortium of partners from the University of Twente, the Technical University of Eindhoven, the Technical University of Dresden, and the Helmholtz Zentrum Dresden-Rossendorf, as well as industrial partners, VDL, SPGPrints, Vitesco, and industry De Nora. This consortium provides an excellent network to excellent academic groups and industrial innovators and will provide a dynamic and stimulating environment for your continuing development as a research scientist and academic trajectory. Furthermore, you may actively contribute to the teaching program, e.g. by supervising BSc and MSc assignments or by acting as a teaching assistant in courses taught by department staff and engaging with the Dutch research community via organizations such as the J.M. Burgerscentrum for Fluid Mechanics.

Requirements:

  • You are an enthusiastic and highly motivated researcher with affinity for numerical simulations that connect to experimental observations;
  • You have acquired, or will shortly acquire, a doctoral degree in the field of (electro)chemical engineering, electrochemistry, physical chemistry, or (fluid) physics;
  • You have affinity for innovations towards sustainable solutions;
  • Modelling and simulation expertise involving transport phenomena and multiphase systems is essential;
  • Preferably you have experience with simulation of electrochemical systems and connecting simulations to experimental findings;
  • You have a creative mindset, excellent analytical and communication skills and a demonstrated ability to work both independently and in collaboratively in a team environment;
  • You have a good team spirit and like to work in an interdisciplinary and internationally oriented environment;
  • You are proficient in English per the University guidelines. A written test and scientific presentation in English can be part of the interview procedure.

Salary Benefits:

  • A full-time position for two years;
  • Your salary and associated conditions are in accordance with the collective labour agreement for Dutch universities (CAO-NU);
  • You will receive a gross monthly salary ranging from € 3.858,- to € 5.278,- (salary scale 10) based on education and work experience;
  • There are excellent benefits including a holiday allowance of 8% of the gross annual salary, an end-of-year bonus of 8.3%, and a solid pension scheme;
  • A minimum of 232 leave hours in case of full-time employment based on a formal workweek of 38 hours. A full-time employment in practice means 40 hours a week, therefore resulting in 96 extra leave hours on an annual basis;
  • Free access to sports facilities on campus;
  • A family-friendly institution that offers parental leave (both paid and unpaid).
Work Hours:

38 - 40 hours per week

Address:

Drienerlolaan 5